Занимательная математика

Программа рассчитана на учащихся 5-7 классов. 2 часа в неделю, всего 60 часов. Решение различных задач на развитие логики, памяти. В ходе занятий учащиеся более углубленно изучать математику по школьной программе, подготовятся к олимпиадам. 

Педагоги

Федорова Надежда Леонидовна

Содержание программы

Вводное занятие. Как возникло слово «математика». Беседа о происхождении арифметики. Счет и десятичная система счисления. Счет у первобытных людей. История возникновения термина «математика». Математическая игра "Не собьюсь«.

Натуральные числа. Рассказы о числах-великанах. Систематизация сведений о натуральных числах, чтение и запись многозначных чисел. Чтение и обсуждение рассказов о числах-великанах: «Легенда о шахматной доске», «Награда», "Выгодная сделка".

Запись цифр и чисел у других народов. Беседа о происхождении и развитии письменной нумерации. Цифры у разных народов. Конкурс "Кто больше знает пословиц, поговорок, загадок, в которых встречаются числа?«

Задачи, решаемые с конца. Введение понятия текстовой задачи, сюжетной задачи. Самостоятельное решение задач, обсуждение решений. Разбор различных способов решения: по действиям, с помощью таблицы.

Математические ребусы. Математическими ребусами называют задания на восстановление записей вычислений. Записи восстанавливают на основании логических рассуждений. При этом нельзя ограничиваться отысканием только одного решения. Разбор основных приемов решения математических ребусов. Самостоятельное решение задач, обсуждение решений.

Инварианты. Понятие инварианта некоторого преобразования. В качестве инварианта рассматриваются четность (нечетность) и остаток от деления. Определение четного и нечетного числа. Применение четности при решении задач. Другие стандартные инварианты: перестановки, раскраски.

Принцип Дирихле. Разбор формулировки принципа Дирихле, доказательство принципа методом от противного. Примеры различных задач, решаемых с помощью принципа Дирихле. Самостоятельное решение задач, обсуждение решений.

В стране рыцарей и лжецов. В этой удивительной стране живут рыцари, все высказывания которых – правдивы и лжецы – каждое высказывание которых – ложь. И еще в этой стране бывают гости, в большинстве своем – нормальные люди, с которыми особенно трудно – они могут говорить правду, но могут и солгать. Внимательный путешественник, однако, всегда может разобраться кто перед ним... Решение задач.

Графы и их применение в решении задач. Понятие графа, определения четной вершины, нечетной вершины. Свойства графа. Решение задач с использованием графов. Знакомство с биографией Леонарда Эйлера.

Логические задачи, решаемые с использованием таблиц. Понятие высказывания как предложения, о котором можно сказать – истинно оно или ложно. Построение отрицательных высказываний, особенно со словами «каждый», «любой», «хотя бы один» и т. д. Методы решения логических задач с помощью применения таблиц и с помощью рассуждения. Объяснение данных методов на примере решения задач.

Текстовые задачи. Математические игры, выигрышные ситуации, переливания.

Задачи на проценты и части.

Конструирование. Составление различных конструкций из букв Т и Г. Составление композиций орнаментов, рисунков. Геометрические иллюзии.

Задачи на разрезание и складывание фигур. Решение задач, в которых заданную фигуру, разделенную на равные клеточки, надо разрезать на несколько равных частей. Изготовление из картона набора пентамино и решение задач с использованием этого набора.

Олимпиадные задачи. Основная цель – подготовить учащихся к участию в олимпиадах и конкурсе "Кенгуру".

Цели программы

Основная цель программы – развитие творческих способностей, логического мышления, углубление знаний, полученных на уроке, и расширение общего кругозора ребенка в процессе живого и забавного рассмотрения различных практических задач и вопросов.

Результат программы

Учащиеся разберут олимпиадные задачи, научаться подбирать логические решения к заданиям. 

Материально-техническая база

Кабинет математики, задачники, видео уроки, экран, проектор.